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A non-dissipative fluid rotates uniformly in the annular region between two 
infinitely long cylinders and is permeated by a magnetic field varying with 
distance from the axis of rotation. The hydromagnetic stability of this system is 
examined theoretically. When the magnetic field is azimuthal the system can 
always be rendered stable to axisymmetric disturbances by sufficiently rapid 
rotation (Michael 1954). Unless the magnetic field everywhere decreases with 
radius, however, the system may be unstable to non-axisymmetric disturbances 
even when the rotation speed exceeds a typical Alfv6n speed by many orders of 
magnitude. ‘Slow’ hydromagnetic waves, akin to those invoked in a recent 
theory of the geomagnetic secular variation (Hide 1966), may then be generated 
by the spatial variations of the magnetic field. All unstable waves so generated 
propagate against the basic rotation, i.e. ‘westward ’, when the field is azimuthal, 
and this property is in fact remarkably insensitive to variations in both magni- 
tude and direction of the imposed field. 

1. Introduction 
Pollowing a recent suggestion (Hide 1966) that the slow westward drift with 

time of the non-dipole geomagnetic field and the general time scale of the geo- 
magnetic secular variation may be a manifestation (in part, at least) of free 
hydromagnetic oscillations of the earth’s liquid core there has been considerable 
interest in the propagation of hydromagnetic waves in a bounded rotating fluid. 
Oscillations of an inviscid, perfectly conducting, incompressible and homo- 
geneous fluid rotating between two concentric spheres in the presence of a 
predominantly azimuthal magnetic field are of particular interest in this con- 
nexion. Analysis of the ‘ thin-shell ’ case, in which the radii of the spheres are nearly 
equal (Hide 1966; Stewartson 1967), reveals the existence at  ‘rapid’ rotation 
rates (i.e. low values of the parameter 

where V is a typical Alfv6n speed,$ s1 the angular velocity of rotation and h a, 

t Present address : Geophysical Fluid Dynamics Laboratory, Meteorological Office, 
Bracknell, Berkshire. 

This is the speed at which hydromagnetic waves would propagate if the fluid were not 
rotating. V = B/(pp)* ,  where B is the magnetic field, p the fluid density and ,u the mag- 
netic permeability (see, for example, Shercliff 1965). Rationalized mks units will be used 
throughout. 
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Q = V/Qh, (1.1) 
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typical wavelength) of two distinct classes of wave motion. I n  addition to the 
familiar planetary waves, first examined by Rossby (1939), there are ‘hydro- 
magnetic-planetary ’ waves which propagate eastward very slowly compared 
with the Alfv6n speed with typical phase velocities of order QV. Using the results 
of his thin-shell analysis Hide (1966) argued that in a thick spherical shell such as 
the earth’s liquid core (for which Q N 10-3) those slow hydromagnetic waves 
characterized by quasi-two-dimensional motions (in which fluid filaments 
parallel to the rotation axis move as coherent units) would propagate westward. 
While subsequent analyses (Stewartson 1967; Malkus 1 9 6 7 ~ ;  Rickard 1970; 
Acheson 1971) do not appear to deny that the boundaries of a thick spherical 
shell may constrain the slow ‘Jilamentary ’ wave motions to propagate westward 
in this way, they make clear that other, quite different, three-dimensional modes 
of hydromagnetic-planetary wave propagation are possible. Malkus (1 967 a) ,  for 
example, examined various modes of oscillation in a full sphere, taking an 
azimuthal magnetic field profile corresponding to a uniform electric current along 
the rotation axis. He found waves propagating both east and west with, on 
balance, no significant preference for either direction. He suggested, however, a 
possible mechanism for the selective excitation of westward-propagating waves. 
Laboratory experiments on (non-hydromagnetic) flows induced in rotating 
spheroids by forced precession indicate the presence of azimuthal flows with 
sharp discontinuities in slope. Quasi-two-dimensional wave-like instabilities form 
on such discontinuities and a hydromagnetic theory (Malkus 1967 b)  shows that a t  
low values of the parameter Q hydromagnetic-planetary waves generated in this 
way propagate westward relative to the velocity a t  the slope discontinuity. 

In this paper we continue the search for plausible westward selection mecha- 
nisms by examining the generation of ‘slow’ hydromagnetic waves in a rotating 
fluid by instabilities resulting from spatial variations in the magnetic field. 
Mathematical difficulties are greatly reduced by replacing the spherical bound- 
aries by concentric cylinders, and the concomitant simplifications permit 
investigation of a very wide range of magnetic field profiles. While the character 
of the quasi-two-dimensional oscillations is especially sensitive to the geometry of 
the boundaries (Hide 1966) it is not apriori evident that we may not learn of the 
qualitative properties of the more complex oscillations of a spherical system in 
this way. Nevertheless (and in spite of the encouraging result, which we shall 
prove in $3,  that all unstable modes generated by the spatial variations of an 
azimuthal magnetic field propagate westward relative to the rotating fluid), the 
analysis will be, for the most part, presented as a straightforward extension of the 
axisymmetric stability analyses of Michael (1954), Velikhov (1959) and Chandra- 
sekhar (196 1). Discussion of the extent to which this selection mechanism and the 
westward drift of the earth’s magnetic field may be related necessarily involves 
concepts that are under constant revision as new evidence regarding the earth‘s 
interior comes to light, and is best postponed for inclusion in a future paper. 
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2. Mathematical formulation 
To investigate the hydromagnetic stability of an inviscid, perfectly conducting, 

incompressible and homogeneous fluid rotating with angular velocity S2 it is 
convenient to choose a set of uniformly rotating cylindrical polar co-ordinates 
( r ,  8, z )  relative to which the fluid is at  rest. The imposed magnetic field 

varies in both magnitude and direction with distance from the rotation axis and 
the fluid is bounded by two infinitely long cylinders r = rl and r = r2. 

The appropriate MHD equations relative t o  the rotating co-ordinate system 
are 

1 1 

P PP 
8 U / a t + ( U . v ) U + 2 ~ A U  = - -vp+-(vA B) A B ,  (2.1) 

v.u = 0, 

V . B  = 0,  

aB/at = V A (u A B), 

where u represents the velocity of the fluid relative to the rotating frame, t time, 
p density, p the pressure in excess of that required to balance the centrifugal force, 
p magnetic permeability and B magnetic field (Shercliff 1965; Hide 1 9 6 9 ~ ) .  The 
equilibrium state u = 0, B = B, is an exact solution of these equations. We 
perturb this basic state by small amounts u and b respectively, linearize the 
equations in the usual way and seek solutions in which all perturbation quantities 
@ may be written 

@ = g[$(r)ei(me+nz-wt) I. ( 2 . 5 )  

We thus find 

where 

8, = -5 (nB,+?), 
w 

(2 .11 )  

(2.12) 

and primes denote differentiation with respect to r .  It is convenient at this stage 
34-2 
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to replace a,(r) by the more economical symbol u(r), which then satisfies the 
following differential equation : 

putt+ [ F + r  P r2 r 2 + m 2 / n 2  + 3m2/n2]}  U' + GU = 0, (2 .13)  

where G(r)  = 

Subsequent sections will be concerned with the properties of this equation 
subject to the boundary conditions of no flow through the container walls, i.e. 

u(rl)  = u(r2) = 0. 

In  view of the geophysical motivation for the study of this problem we shall be 
interested primarily in non-axisymmetric disturbances. 

3. Azimuthal propagation of non-axisymmetric unstable modes 
Equation (2.13) may be written 

where 

Multip-jing (3 .1)  by the complex conjugate of u and integrat-ig between the 
boundaries r = rl and r = r2 (at which u must vanish) we find 

Now let w = w, + iw, (subscripts denoting real and imaginary parts) and multiply 
(3.3) by c2. Equating the real and imaginary parts of the left-hand side separately 
to zero we conclude (from the imaginary part) that 

where 

and S,(r) 3 Qrc,+ V,+- V, - S12r2cq { ( 2) )z 

(3.5) 

+ g ( S l r c , +  c, @+g) V,){  ( V , + ~ ) ' - c ~ + c ~ ) .  (3.6) 
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In  the absence of rotation (!J = 0) the integrand in (3.4) is positive throughout 
the interval rl < r < r2 (since the azimuthal wavenumber m may take only 
integral values), the integral therefore cannot vanish, and we conclude that 
crci = 0 so that any unstable modes do not propagate. In  a rotating fluid, on the 
other hand, non-axisymmetric disturbances may both grow in amplitude and 
propagate, and we now turn attention to such modes, for which c,ci + 0. 

First note that Sl(r) is always positive and that 

is satisfied somewhere in the interval rl < r < r2 the integrand in (3.4) is every- 
where positive, the integral cannot vanish, and with our initial assumption 
c,c, =!= 0 we are led to a contradiction. We thus conclude that modes with c,ci =I= 0 
must be such that 

r2 4 (v.+$) (@+ 2) ( V;  + 02r2) + - 

+ nc,(r2 2Qm + m2n-2) ( [@+~)2-c :+c; ]2+4c ,Zce )  < 0 (3.9) 

somewhere in the interval rl < r < r2. 
If the magnetic field is purely azimuthal then (3.9) becomes 

whence it is clear that, regardless of the details of the rnagneticJield proJile, any 
unstable disturbances must have 

(3.11) 

where cOr = w,lm is the phase velocity in the azimuthal direction, and must 
therefore propagate against the basic rotation, i.e. 'westward '. Comparing (3.9) and 
(3.10) it is also clear that this result still holds even if the magnetic field varies in 
both magnitude and direction with distance from the rotation axis provided that 

(3.12) 

everywhere in the interval rl < r < r2. If the axial and azimuthal dimensions of 
an unstable disturbance are comparable it must therefore propagate westward, 
provided only that the axial magnetic field is somewhat less than the azimuthal 
field everywhere. Finally note that all unstable disturbances do in fact propagate 
westward when the magnetic field is purely axial, as evinced by setting V, = 0 
in (3.9). 
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Thus hydromagnetic waves generated in a rotating fluid by instabilities due to 
spatial variations in the magnetic field propagate westward for a wide range of 
magnetic field profiles. These profiles must, however, possess a few simple 
properties for there to be any unstable modes at all, and it is to these properties 
that we now turn attention. 

4. Sufficient conditions for stability : azimuthal magnetic field 
We first note certain conditions under which unstable non-axisymmetric 

modes must propagate (in contrast to  the non-rotating case). Supposing that 
they do not (i.e. c, = 0), (3.4) becomes 

We thus obtain a contradiction (for the left-hand side cannot then vanish) if 
either (a) the field is purely azimuthal, ( b )  the field is purely axial or (c) both 
components are present but IV,l < Im‘V,/(m)I everywhere in the interval 
rl < r < r2, and accordingly learn that under any of these three conditions non- 
axisymmetric unstable disturbances in a rotating fluid must propagate. We 
confine attention in the remainder of this section to the case in which the field is 
entirely azimuthal. When investigating non-axisymmetric unstable modes it 
is therefore appropriate to take both c, and ci as non-zero. In this case the 
imaginary part of (3.3) becomes 

where, after some manipulation, S3(r) may be written as 

4 )-’]-’), m2 V2, 
+ { - 

r2 + m2n-2 

(4.3) 
V i  m2 
r2w2 

P(r) = - - 1. 

~ , ( r )  = ~ [ 4 ~ 2 - r ( 2 ) ’ ] .  

and 

Clearly if m = 0 then P = - 1 and 

Iwl2 
(4.4) 

Inspection of (4.2) then reveals that if 
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does not change sign in the interval then either w, or wi must be zero. Michael 
(1954) was in fact able to show that the system is stable to axisymmetric dis- 
turbances if and only i f  L > 0 everywhere in the interval rl < r < r2. Thus even 
if the magnetic field configuration is such as t o  promote instability the system can 
always be rendered stable to  axisymmetric disturbances by sufficiently rapid 
rotation. 

As far as non-axisymmetric disturbances are concerned we know from the 
previous section that all unstable modes drift west; so consider here Qmw, < 0. 
If Vgm2 > 3r2u$ everywhere in the interval the second term on the right-hand 
side of (4.3) will be positive. The final term exceeds 

m2 Vg m2 - - - (n2r2( 1-5) + (2m2- 7 )  + r2n2 -(m2- 1) 
r2 1 w I2(r2  + m2n-2) 

which for (mi > 1 (and, of course, integral) is patently positive. Inspection of 
(4.2) then leads to the conclusion that unstable non-axisymmetric modes, such 
that Vgm2 > 3r2u: everywhere and Iml > 1, can only occur i f  Vg/r2 increases with 
radius somewhere in the interval r l  < r < r2. 

5. Local stability analysis : azimuthal magnetic field 
It is difficult to gain further insight into the instability mechanism while 

maintaining the generality of the previous two sections. We accordingly now 
present a local analysis (following Velikhov 1959; Schubert 1968) in which, while 
still not restricting attention to any particular magnetic field profile, we investi- 
gate the stability of disturbances with radial wavelengths which are short 
compared with the natural length scale associated with spatial variations in the 
magnetic field. Such an analysis brings out very clearly essential differences 
between axisymmetric and non-axisymmetric disturbances when the fluid is in 
rapid rotation (cf. the non-hydromagnetic problem discussed, for example, by 
Joseph & Munson (1970)). 

Axisymmetric disturbances 

Equation (2.13) may then be written as 

Now consider the local solutions of (5.1) in the neighbourhood of a particular 
radius r = ro so that the coefficients may be regarded as uniform (to a first 
approximation) in that neighbourhood. The equation then admits solutions 
u K eilr, where 1 is a local radial wavenumber satisfying 

This local analysis will only be justified, however, if the radial wavelength is 
small compared with the radius, i.e. if 1 % 2n/ro, and we must therefore for 
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consistency neglect the second and fourth terms in (5.2) compared with the first, 
whence 

The system is therefore stable to axisymmetric disturbances if and only if 

e> (2)’ , 
r0 r=ro 

and this is, of course, consistent with the studies of Michael (1954). 

(5.3) 

(5.4) 

Non-axisymmetric disturbances 

Setting V,  = 0 in (2.13) and applying the same procedure to that equation 
(assuming P’(ro) N P(ro)/ro and I @ 2n/ro) we find 

4n2 m V 2  2 4m Q m V2 
[;+>(S)~J +r:+rn2n-2[;+2($) r=ro ] 

2+n2+- - (1 Ti2) 
Our main interest lies in the ‘slow’ hydromagnetic waves that propagate in a 
‘rapidly’ rotating fluid (see 4 1). We do not yet know the growth rate of such 
waves, however, so that while it is helpful at this stage to replace 

P = m2V;/r2d-  1 by m2V;/r2w2 

we shall have to justify this step a posteriori. Equation (5 .5)  then becomes a 
quadratic equation for w with roots given by 

if JmJ > 1, we conclude that when ( Vi/r2)&, < 0 all modes with I ml > 1 are stable 
and may propagate both east and west. If ( Vi/r2)‘ is positive and sufficiently 
large, however, then unstable modes will result and such waves propagate 
westward in accord with the very much more general conclusions of 4 3. 

For unstable modes we clearly require 

and since (for a local analysis to be appropriate) we must have Z2 @ rc2, (5.8) can 
only be satisfied if m2/n2r: < 1 (assuming yo( V$/r2)i=To N ( F ‘ ; / Y ~ ) ~ = ~ ~ ) .  The charac- 
ter of the unstable waves is therefore displayed by a somewhat simplified version 
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This formula shows that the growth rate of the unstable waves will in general be 
comparable with their frequency and that IwI - lmV2/Clr21. Our initial assump- 
tion that P may be replaced to good approximation by m2Vg/r2u2 is therefore 
valid provided Q2 9 ( T‘$/r2),.=ro. 

Equation (5.9) shows how the destabilizing effect of a magnetic field gradient 
such that ( V:/r2)‘ > 0 is opposed by the stabilizing effect of the field itself, for 
the more the lines of force are twisted (i.e. the higher the value of m) the greater 
the restoring force of the ‘equivalent elastic strings’. It is also natural that 
disturbances with large radial wavenumbers I are less likely to be unstable than 
those with small ones, for in view of their smaller dimensions they will ‘feel ’ the 
destabilizing influence of a radial magnetic field gradient correspondingly less. 

While this local analysis has therefore provided some insight into the nature of 
the unstable modes we must bear in mind how the conclusion that they must be 
characterized by very low values of m2/n2r& i.e. by axial rather than azimuthal 
propagation, is a direct consequence of the assumptions required for the validity 
of such an analysis. This ‘weak’ azimuthal propagation will not necessarily be 
characteristic of the more general circumstances covered by the analyses of the 
earlier sections. 

6. Discussion 
Sections 4 and 5 have made it clear that while a ‘rapidly’ rotating fluid annulus 

permeated by an azimuthal magnetic field is stable to axisymmetric disturbances 
unless 

somewhere (cf. equation (4.5)), the amplitude of non-axisymmetric disturbances 

can grow with time even if 2 2 ’  

( G / r 2 )  
r 5 . ! 2 2  2 o(m2) (6.2) 

(cf. equation (5.9)). Thus when a2r2 9 V: non-axisymmetric modes are more 
likely to be unstable than axisymmetric ones. The reason is that axisymmetric 
disturbances do not twist the lines of force of an azimuthal magnetic field and as 
the rotation speed increases indefinitely the Lorentz force becomes negligible in 
comparison with the Coriolis force so that hydromagnetic effects are masked 
(as C? -+ co equation (5.3), for example, approaches the dispersion relationship 
for axisymmetric inertial waves). Non-axisymmetric disturbances, however, 
twist the lines of force and accordingly take the form, at ‘rapid’ rotation speeds, 
of ‘slow’ hydromagnetic waves (see 8 1). It is a fundamental property of such 
waves that they are characterized by a delicate balance between the vorticity 
induced by Lorentz and Coriolis forces, and this persistent balance discourages 
the tendency toward two-dimensionality (and therefore stability) that would 
prevail if hydromagnetic effects were absent. Twisting of the field lines therefore 
produces an intimate coupling between hydromagnetic and rotational effects bhat 
prevents the former from being masked however small the magnetic field. 

This persistent coupling is due to the perfect conductivity of the fluid, for 



538 D .  J .  Acheson 

AlfvBn’s classic theorem concerning the ‘ freezing-in ’ of lines of force to the fluid 
follows directly from that assumption, and the strength of the attachment of the 
lines of force to theJluid i s  then in no  way  dependent on the strength of the magnetic 
Jield. While effects due to finite conductivity have not yet been fully investi- 
gated, elementary considerations (Acheson 1971) suggest that for the above 
analysis to be appropriate the ‘ hydromagnetic interaction parameter ’ 

a = V%p/2Q 

must be much greater than unity, where CT is the electrical conductivity of the 
fluid. This parameter (like Q )  is one of the most important to emerge so far from 
studies of the magnetohydrodynamics of rotating fluids. In  addition to acCing 
(inversely) as a measure of the decay of ‘slow’ hydromagnetic waves due to 
ohmic dissipation (Acheson 1971) it indicates the relative importance of hydro- 
magnetic and rotational effects on viscous boundary layers (e.g. Gilman & 
Benton 1968; Benton & Loper 1969; Hide 19698; Loper & Benton 1970). 

To summarize, then, it appears that a non-uniform magnetic field such that 
(Bt/r2)’ > 0 somewhere can act as a westward selection mechanism for ‘slow’ 
hydromagnetic waves, for only westward-propagating waves can feed on some 
‘available magnetic energy ’ in the basic magnetic field distribution and grow in 
amplitude with time. This mechanism is evidently insensitive to the details of 
the magnetic field profile and even to changes in direction as well as magnitude of 
the imposed field (see equation (3.12)). Although it is not evident that spherical, 
rather than cylindrical boundaries will change the main conclusions of this paper, 
a corresponding analysis in a thick spherical shell is naturally desirable, parti- 
cularly in view of the possible role of these hydromagnetic instabilities in the 
origin of the westward drift of the geomagnetic field. I n  conclusion, however, we 
remark that no azimuthal magnetic field varying with latitude in a th in  spherical 
shell gives rise t o  these instabilities (Acheson (1971), see also Gilman (1967) for a 
‘/3 plane’ analysis including baroclinic effects). How this bears on the present 
problem is far from clear, for the assumptions in that analysis of (i) essentially 
two-dimensional disturbances, and (ii) no radial (in the spherical sense) velocity 
or magnetic field components, rendered the system highly constrained in com- 
parison with that studied above. It will, however, be discussed more fully in a 
future paper along with some related results providing further clues to the 
precise physical nature of these hydromagnetic instabilities. It appears from a 
preliminary analysis than an investigation of ‘slow’ wave generation by an 
unstable density gradient (certain aspects of which have been discussed by 
Braginsky (1967)) may help a great deal in this respect. 

The research reported in this paper was carried out a t  the University of 
East Anglia and in the Geophysical Fluid Dynamics Laboratory of the Meteor- 
ological Office. The author wishes to thank Professor M. B. Glauert and 
Professor R. Hide for their help and is grateful to the Science Research Council 
for their financial support through a Research Studentship. 
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Appendix 
We finally include some consideration of the energetics of the above system 

when it is not open-ended but bounded at z = z1 and z = z2 .  (To satisfy the 
additional boundary conditions U$(T, 8, zl) = u,(r, 8, z2) = 0 the axial wavenumber 
n will then take a discrete set of values such that n(z2 - zl) is an integral multiple 

From equations (2.1)-(2.4) it is straightforward (see, for example, Roberts 
of n.) 

1967) to derive the energy equation: 

at 

where E (which, t o  prevent the flow of infinite currents in a perfectly conducting 
fluid, musti be equal to - u A B) is the electric field, dr denotes an element of 
volume and dS denotes a directed element of area of the bounding surface. This 
equation amounts to the statement that the total energy (i.e. kinetic +magnetic) 
of the system discussed in this paper can increase only as a result of a Poynting 
flux of electromagnetic energy through the boundaries. We now show that to a 
first approximation this flux is zero and that the total energy therefore remains 
constant. 

Write B as B = B,+b,+b,, (A 3) 

where B, = (0, Bo(r), 0}  is the imposed azimuthal magnetic field, b, is that  part 
of the magnetic field perturbation satisfying exactly the linearized equations of 
motion (2.6)-(2.14) and b, is the resultant of all the higher order terms in a 
formal expansion of B in powers of some typical value e of I bll/l B,I (thus I bRl/l b,l 
is of order 8). Equations (2.6) and (2.8) then show that since the normal compo- 
nent of u vanishes at both the cylindrical and top and bottom boundaries so does 
the normal component of b,. On inserting the  expansion (A3)  into (A2) this 
observation leads us to conclude, to a first approximation, that 

at 

so that there is no interchange of energy between the fluid and its surroundings 
and the sole energy source for the wave generation thus lies in the basic magnetic 
field. 

We now inquire how the total energy of the wave changes with time. Denoting 
the perturbation field b, + b, by b, we find (on using (2.4), some vector identities, 
and the fact that the normal component of b, vanishes at the boundaries) that 

(Vr\B,) . (ur\B)d~ 

= - I// (V A €3,) . (u, A b, + uR A B,) dr .  (A 6) 
P 
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(In view of the fact that 

uz = u,(r) cos (m0 + nz - wt)  + u2(r) sin (me + nz - wt) 

and m is an integer, the leading term 

p-l/// (v A B ~ ) .  (ul A B ~ )  d7 

is zero.) Equation (A 5 )  indicates the importance of a magnetic field gradient as far 
as wave generation is concerned. 

Not only is it clear that no energy is available for such generation in the no- 
current case V A B, = 0, i.e. B,cc r-l (in keeping with the necessary condition 
derived above, namely (Bz/r2)’ > 0 somewhere), but it becomes clear energetically 
why no slow wave generation is possible due to a constant current (which is, 
incidentally, in keeping with the results of Malkus ( 1 9 6 7 ~ )  for a sphere). To see 
this, note that the slow waves are characterized by very small values of lwl/ l  S21 
(see equation (5.6)) so that (2.1) may be written as 

1 1 
2a A U = - - V p  + - (V A B) A B 

P PP 

with error 0(V2/Q2R2) (if the wavelengths involved are comparable with the 
outer radius of the annulus R). Taking the scalar product of (A 7) with B and 
integrating over the volume of the cylinder we thus find 

2 a . ( u A B ) d ~  = 

Observe from (A 7) thatp/pR( !21 (utl is at most of order unity, so that if the (axial) 
current j, = p-IV A B, is constant we find from (A 8) that 

is at  most of order (,u-luZBR2)bR. But  note from (A 5) and (A 6) that, in any other 
event, it is typically of order (p-luZBR2)bl ! Thus we see, on energetic grounds, the 
importance of a radial gradient of electric current. 

We finally remark that, while hydromagnetic waves in a non-rotating fluid are 
characterized by equipartition between kinetic and magnetic energy, such 
equipartition does not persist when the fluid is rotating. Indeed we may easily 
see by setting w N V2/S1R2 in (2.6), (2.7) or (2.8) that the kinetic energy of ‘slow’ 
waves in a rapidly rotating fluid (QR > V )  accounts for only a very small fraction 
( N V2/Q2R2) of the total wave energy, the remainder being in the form of mag- 
netic energy. 
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